A zero-camber airfoil of chord $c=1$ is in a flow of $V_{\infty}=1$ at angle of attack $\alpha=0.1$ radians. As derived in the notes, the vortex sheet strength needed to represent the flow about this airfoil is

$$
\gamma(x)=2 V_{\infty} \alpha \sqrt{\frac{c-x}{x}}
$$

1a) Determine an expression for the vertical velocity w at the location $(x, z)=(-0.5,0)$. Use numerical integration to get a numerical value for w.
Note: Do not attempt to use the trigonometric variable θ here - it won't work. Evaluate the integral in the physical x coordinate.
$1 b)$ Determine the flow angle at the location $(x, z)=(-0.5,0)$, and compare to the freestream flow angle α.

1c) Why is it difficult to measure the freestream α on an actual airplane?

